

Astro Clare Technology © Flint, MI EST 2022

“ HELLO CODER “

We at Astro Clare Technology are proud to have you receive this book! There will be
many fun activities for you to enjoy. If you are a parent purchasing this book for your

child to venture into they great world of becoming an software engineer, we thank you
for trusting us ! We have many great activities for you and your child to enjoy together.

Our main objective is to get individuals to begin their journey in coding, programming
and computing technologies. We see the lack of resources decline over the years and
understand that purchasing these courses at Universities are even more challenging
financially and timely. So we will due more than just “teach” you how to become the

greatest engineer!

You are going to learn many skills such as: critical thinking, logical outlooks, problem
solving skills, discipline and career ready structure and even more !

Each successful assessment from you will grant an Certificate from Astro Clare

Technology along with an PDF of your course completion to show your next employer.

Once again, we thank you for trusting in Astro Clare Technology and hope you put your
best code forward.

Clarence Scott
CEO & Founder

Overview

Web Development is the process of creating websites, webpages, or web applications that
are accessed via the internet. It involves various aspects, including designing, coding,
debugging/testing, and maintenance to ensure proper functionality and user experience.

Web Development is an overall dynamic and evolving field that requires continuous learning
and adaption to new technologies and best practices. Collaboration and communication skills are
also very important, as developers often work in teams with designers, stakeholders and content
creators to deliver successful web projects.

Some Key Components and technologies involved in web development:

Pre-Requisites

 In order to begin coding with us you only need 3 things: Computer (with
monitor), Text Editor and the drive to want to code.

 First, let’s make sure you have the visual studio code software
downloaded. Head over to Microsoft’s website and download Visual Studio Code,
or click the link here Visual Studio Download. In the Extensions tab after you
have it downloaded install the extension Live Server by Ritwick Day and you
will be ready to continue. If you need help refer to our Youtube Video “ Setting
Up Visual Studio for Development”.

 Secondly, ensure you are in a quiet setting and can focus on coding and
studying the information in this book. Focus is key, determination is power. Code
is the goal.

 Lastly, grab a snack and something to drink (always have a water near
you) so that you can stay mentally strong while studying and coding. The brain will
become very tired and you will become mentally drained if you do not.

https://code.visualstudio.com/Download

Creating Our Docs

“Hello World”

Now that you are ready to code, let’s take a look at
our setup in visual studio.
If everything was done correctly your screen should
look like this:

If so, you have successfully downloaded Visual
Studio Code. If you hover over the “Open Editors”
section you can add a new file. Do that.

In that file we are going to add the text: “Hello
World” and save the file. Once the popup shows to
name your file, create a folder where you are at and
name the folder “Portfolio” and then name your text
file “index.html” and save it.

Reopen Visual Studio with this new folder by either
closing the app and opening in the folder path by
right-clicking or by clicking the “file” tab in the Visual Studio window and proceeding from there.

Once done your new layout should look like this.
If you have a similar layout the bravo you are ready! Assuming you have downloaded the Live
Server extension down in the right hand corner you should see “Go Live”. If so click that and
watch what happens next.

You should have your webpage showing! It will say “Hello World” just as you put in the code.
Now that we have our HTML doc created let’s dig deeper. Replace Hello world with the text
“html:5” When the drop down shows click enter and your new Visual Studio page should look
like this:

Table Of Contents
Web Development

I. HTML Fundamentals
a. Markup with metadata elements

i. Script, no script, style, link, meta tags (encoding, keywords, viewport
and description)

b. Construct well formed page markup
i. DocType declaration, html, head, body, proper syntax, closing tags,

common symbols
II. CSS Fundamentals

a. Analyze and implement inline styles, embedded style sheets and external
stylesheets

i. When to use these stylesheets
b. Construct and analyze rule sets

i. Valid syntax for CSS rule set, selectors (class, id, elements, pseudo)
III. Document Structure using HTML

a. Construct and analyze markup to structure content and organize data
i. Table tags (table, tr, th, td), h1-h6, p, br, hr, div, span, ul, ol, li

b. Construct and analyze markup that uses HTML semantic elements
i. Semantic tags

(header,nav,section,article,aside,footer,details,summary,figure,capti
on)

c. Construct and analyze markup that implements navigation
i. Target, anchor (a href), bookmark, relative vs absolute links,

navigation, simple folder hierarchies map, area.
d. Construct and analyze markup that uses form elements.

i. Form attributes, action, method, submission methods, input types
and restrictions, select, textarea, button, option, label

IV. Multimedia presentation using HTML
a. Construct and analyze markup that displays images

i. Img and picture elements and their attributes
b. Construct and analyze markup that plays audio and video.

i. Video, audio, track, source, iframe
V. Webpage Styling using CSS

a. Construct and analyze styles that position content
i. Positioning (float, relative, absolute, static, fixed) max-width,

overflow, height, width, align, display, inline vs block, visibility, box-
model, margins and padding.

b. Construct and analyze styles that format text
i. Font-family, color, font-style, font-size, font-weight, font-variant, link

colors, text formatting, text alignment, text decoration, indentation,
line height, word-wrap, letter spacing

c. Construct and analyze styles that format backgrounds and borders
i. Border-color, border-style, border-width, background properties,

colors
d. Construct and analyze styles that create a simple responsive layout

i. Units of measurement (percentage, pixel, emphasized text (em),
view-width, view-height), viewport and media query, frameworks
and templates, working with breakpoints, grids

VI. Accessibility, readability, and testing
a. Construct well formed HTML and CSS markup to industry best practices

i. Reusing rules and rule sets, commenting, web safe fonts, cross
platform usability, separation of HTML & CSS

b. Apply Accessibility principles and evaluate content accessibility
i. Text alternatives, color contrast and usage, legibility of typography,

tab order, text resizing, text hierarchy, translate
c. Evaluate the structure of integrity of HTML and CSS

i. Syntax errors, tag mismatch, cascading issues.

HTML Fundamentals
Markup with metadata elements

When you are working with HTML elements, they are essential for ensuring the proper
management, organization and increased value of your webpage. They are effective for receiving
information, discovery, interpretation, and preservation in web applications. We are going to cover a
few in detail. Script, no script, style, link, meta tags (encoding, keywords, viewport, and
description).

• Script: Used to embed or refer to executable code within an HTML document.
JavaScript code can be included within <script> tags, rather than external
document.

• No Script: This element provides alternate content to users who have disabled
scripts in their browsers or whose browsers don’t support scripting languages.

• Style: <style> tags are used to initiate CSS (Cascading Style Sheets) within an HTML
document. This allows you to control the presentation and layout of your HTML
content.

• Link: The <link> element is used for external resources, such as stylesheets, icons,
JavaScript, or other documents. You would use <link> when linking access to your
CSS stylesheet through your HTML document.

• Meta Tags: These are used to provide metadata about the HTML Document
o Encoding: <meta charset=” UTF-8” > specifies the character encoding for

your document.
o Keywords: <meta name=” keywords” content=” word1, word2…” > Provides

keywords relevant to the documents content.
o Viewport: <meta name=” viewport” content=” width=device-width, initial-

scale=1.0”> sets the viewport properties, mainly used for responsive design.
o Description: <meta name=” description” content=” Brief description of your

webpage”> provides a summary of the page’s content. (30-150 words)

Construct well-formed page markup
 When creating well-formed page markup, you should follow certain conventions to have
proper HTML documentation layout. Following these guidelines will help give you proper structure
and contain all the data needed for search engines and browsers to interpret your webpage
correctly.

• DocType Declaration: This is the very first line of all HTML documents. It tells the
browser which version of HTML the page is written in. <!DOCTYPE html> is the
declaration for HTML5, which is what you should be using.

• Html: the <html> element is the root element of an HTML page. All other elements
should always be contained in it.

• Head: the <head> element contains meta-information about the documents. (see
meta-tags above)

• Body: the <body> element contains the content of your HTML document that will be
shown in the browser.

• Proper syntax: HTML syntax must be correct for the document to render. This includes
using opening and closing tags correctly, nesting elements properly, as well as using
attribute values properly.

• Closing tags: Every opening tag must have a corresponding closing tag, apart from self-
closing tags like or

• Common Symbols: Some characters have special meaning in HTML and must be
represented using character entities. ‘<’ represents the less-than sign ‘<’. Or using the
ampersand ‘&’ should be represented using ‘&’. These are used to avoid parsing
errors to display the characters correctly in the browser.

CSS Fundamentals
Analyze and Implement inline styles, embedded style sheets and
external stylesheets
Inline styles are CSS styles directly applied to individual HTML elements using the ‘style’ attribute.
An attribute is a CSS property that is used to assign a style or behavior to an HTML element. Inline
styles are useful for changes or applying unique styles to specific elements.

<p style="color: blue; font-size: 18px;">This is an inline example.</p>

Embedded style sheets are CSS styles that are defined within the <style> element in the head
section of an HTML document.

<head>

 <title>Document</title>

 <style>

 p{

 color: blue;

 font-size: 18px;

 }

 </style>

</head>

<body>

 <p>This is a paragraph.</p>

</body>

External Stylesheets are CSS files that are linked to an HTML document using the <link> element
in the <head> section. External stylesheets allow you use your CSS styles outside of your HTML
document. Making your code easier to maintain, while applying consistent styles across multiple
HTML pages.

<head>

 <title>Document</title>

 <link rel="stylesheet" type="text/css" href="style.css">

</head>

<body>

<p>This is paragraph. I am being styled externally!</p>

</body>

There is a time and place for using these different stylesheets. Inline styles are for quick styling
changes or unique styles on specific elements. Embedded styles are used to apply styling to
multiple elements in a single document. External sheets are used to apply consistent styles across

multiple HTML pages or when you want to keep your CSS styles separate from your HTML. This
would be for better organization and maintenance.

Construct and Analyze rule sets
Valid syntax for CSS rule sets consists of a selector and one or more declarations that are enclosed
in curly braces ‘{}’. By constructing and analyzing CSS rule sets, you can effectively style your HTML
document to achieve the desired visual presentation. Understanding selectors and valid syntax is
crucial for writing efficient CSS code and maintaining it.

 p{

 color: blue;

 font-size: 18px;

 }
In this example ‘p’ is the selector, which selects all ‘<p>’ elements. The declarations, ‘color:blue;’
and ‘font-size:16px;’, define the styles to be applied to the paragraph elements.

As you continue to use selectors it is important to be aware of the 4 selectors you will be using:
class selector, id selector, element selector, pseudo-selector.

Class selectors begin with a period symbol (.) followed by the class name of your choosing. For
example, ‘.this-class’. Id selector begins with the hash symbol (#) followed by the id name of your
choosing. For example, ‘#my-id’. Element selectors, selects elements based on their tag name. For
example, the p element selects all <p> elements. Pseudo-selectors allow you to style elements
based on their state or position in the document. For example, we can use ‘:hover’ to select an
element when the mouse cursor is over it.

Document Structure using HTML
Construct and Analyze markup to structure content and organize data
Your HTML document is made up of structured data, semantic elements, appropriate navigation,
and form attributes. These all help to maintain proper structure to your HTML content and data.
Data organization consists of tables, headings, paragraphs, break points, div containers, ul and
many more. Semantic elements include headers, sections, footers, captions and many more.
Navigation elements include anchors, folder hierarchies, area, links etc. Form elements include
attributes, action, methods, input types, textarea, labels and many more. By effectively
understanding and using these elements, you will be able to create well-structured and meaningful
documents,

Markup using data structures

Tables are used to organize data into rows and columns.

1. <table> – defines a table
2. <tr> - defines a table row
3. <th> - defines a table header cell
4. <td> - defines a table data cell

 Proper layout of a table, above.

Headings are used to define headings of different levels of importance, where h1 is the highest
level and h6 is the lowest level. (h1-h6)

Paragraphs are used to insert paragraphs with the <p> element.

Line break
 inserts a line break to create a new line or row. Can be nested in <p> elements to
create a new row in your paragraph.

Horizontal rule <hr> inserts a horizontal line break or thematic break.

Div <div> is used to create a new section or division in an html document.

Span defines a section of text with no specific meaning.

Lists are defined in 2 different ways but the items are inititaed the same. Unordered bulleted lists,
are defined using , with the items being inserted using . Ordered numbered lists are
defined using , with the items being inserted using .

Markup using semantic elements

Semantic elements in HTML provide meaning to the content they wrap. This makes for search
engines and developers to understand the structure of the webpage. This includes <header> which
defines the header for a document or section. Navigation <nav> is used to define navigation links,
<section> is used to define a section in a document. Independent pieces of content are defined
with the <article> element. <aside> defines content placed aside from the content it is placed in.
Footer is defined with <footer> to express the footer for a document or section. To provide
additional details to view or hide, <details>, would be used. To provide a visible heading for a
<details> element you can use <summary>. To define self-contained content, images or diagrams
for exmaple, would be defined with <figure>. You can provide a caption for <figure> elements with
<caption>.

Markup using elements that implement navigation

Navigation elements are used to navigate within or outside of your webpage. This could be to
external links or links within your HTML folder heirarchy map.

Target and anchor links are used to create hyperlinks Link Text

Bookmark anchors used for creating internal links within the same document. These are anchors
with a name attribute

<header id="top">

 <p>Some Content</p>

</header>

<div class="section1">

 <p>Some more Content</p></div>

<div class="section2">

 <p>Some more Content</p></div>

<div class="section3">

 <p>Some more Content</p></div>

Go to the top of the page.

Relative and Absolute links are used to utilize different types of URLs. Relative links specify the
path to a resource in the current document, only used to point to a file or a file path. Absolute links
specify a full URL that includes a domain (complete address to a file or resource).

Absolute Domain Examples

• http://yourdomain.example/images/example.png
• //yourdomain.example/images/example.png

Relative Domain Examples:

• /images/example.png
• images/example.png

Navigation is used to construct linkage between pages or sections within a website.
Within a page to a different section:

<header id="top"></header>

Connects to the header.

Within a site to a different page:
Sample Page Link

It is extremely necessary to understand the organization of files and folders in a website
directory structure, also known as your hierarchy map. All webpages, websites, webapps and
software use a hierarchy map or directory structure. The image below shows the flow of a
simple structure for an HTML website.

Area is used with the <map> element to define clickable areas in an image map. Including the
coordinates for the specified clickable area is how you specify the clickable area.

Markup using form elements to build Forms
Form elements are used to build various forms for contact pages, checkout information when
developing online stores or shops to purchase items and many more things. Let’s cover some
elements and build a sample form. We’ll be using form attributes, which are actions that
determine how form data will be submitted, using action and method.

Submission methods are used to send data from your HTML document. Action specifies the
URL where the form data will be submitted. Websites like https://formsubmit.co/ have easy
setup features that allow you to link your current email address with the action attribute to

https://formsubmit.co/

receive emails from your website securely. METHOD relates to the HTTP method used to
submit our form data (GET or POST).
GET vs. POST

• GET requests are used to request data from a specific resource and are sent in the URL
of the request.

o Can be cashed, have restrictions in data length, only used to request data, can be
bookmarked, remains in the browser history, SHOULD NEVER be used when
dealing with sensitive data.

• POST requests are used to send data to a server to create/update a resource, these are
stored and sent in the body of the HTTP request.

o Never cached, does not remain in the browser history, cannot be bookmarked,
should be used when dealing with sensitive data, have no restrictions on data
length.

There are multiple input types you will use in your forms. These include text, password, email,
and phone input attributes and many more. There are optional attributes for validation and
restrictions. Having a menu option in your form is essential for allowing multiple options to be
selected from using <select> to define the dropdown list, and then <option> to define the
options within the dropdown list. Creating an area for user to input text in your form is
essential to taking in information using <textarea>. Labels are an element needed to label our
input types, we can give each input type an label by adding <label> before each input.
 <label for="first-name">

 First Name

 <input type="text" name="firstname" id="fname" placeholder="I am name

input">

 </label>

Lastly, you want to allow your user to submit the form information. You can do this by adding a
button element using <button> and apply multiple attributes to your button. There are 4
options to choose from: b: button, d: disabled, r: reset, s: submit.

Understanding and effectively using HTML form elements will help to create well-structured
and semantically designed web applications, websites and webpages. Be sure to properly
implement navigation and handle user input appropriately in your forms.

Multimedia presentation using HTML
Constructing HTML markup the introduces images

As a web developer or designer, images are a beautiful element that will bring life to any project.
They are simple and fun to add, and easy to style with CSS. We embed images within the HTML
document using the image element . There are 7 attributes we mainly use for image
elements: src, alt, width, height, title, srcset, sizes.

The src attribute specifies the URL (or pathway of the image file), alt provides the text for the image
which is displayed if the image cannot load or for the use of screen readers for accessibility
features. Using the srcset attribute allows you to specify multiple image files for different resolution
or display sizes. We can change the size of the image with the width (adjusts the width properties of
the image) and height (adjusts the height properties of the image) attributes, as well as the sizes
attribute. The sizes attribute specifies the size of an image based on the different viewport widths.
The typical layout for an HTML image markup element is as follows:

As a developer you can specify multiple sources for an image based on different criteria such as:
device resolution or viewport size, with the picture element <picture>. Inside the picture element
you can use the <source> element to specify different image sources. These source elements can
use the srcset and sizes attributes to explore multiple image options.

Constructing HTML markup to analyze audio and video elements

The audio <audio> and video <video> elements are used to embed video and audio elements into
your HTML document. These elements use most of the same attributes to find the path for the
content and control the initialization of the content.

Video element uses the src attribute to specify the URL of the video. In addition to src, you can add
the controls attribute to add playback options to the video player (play, pause, volume, etc.).
Autoplay tells the video to automatically play when the page loads, adding the loop attribute
causes the video to continuously play. The poster attribute allows you to choose an image to show
while the video is downloading or until the user starts to play the video file.

<video src="yourpath/video"" autoplay controls loop

poster="yourpath/toimage"></video>

Audio element uses the same attributes as video apart from poster, src attribute to specify the URL
of the video. In addition to src, you can add the controls attribute to add playback options to the
video player (play, pause, volume, etc.). Autoplay tells the video to automatically play when the
page loads, adding the loop attribute causes the video to continuously play.

<audio src="yourpath/audio" controls autoplay loop></audio>

HTML includes a track element <track> used to specify text for audio or video elements, that
creates subtitles or captions. This has 4 attributes: kind: specifying the kind of track being used
(subtitles, captions, descriptions); src: the URL of the text track file; srclang: specifies the language
of the text track; label: specifies a label for the text track.

Source elements are used to specify alternative media resources for the <video> and <audio>
elements. This can use the attributes: src for the URL of the media file, type specifies the MIME
type of the media file (video/mp4, audio/mpeg).

In the event you need to embed another HTML page or external content within the current
document you are working on, you can use the iframe element <iframe>. This element has 3 main
attributes to use, src: specifies the URL of the embedded content, as well as width and height
attributes to change the sizing of the iframe.

The proper utilizing of these elements will allow you to embed images, audio, and video content
into your HTML documents effectively, to enhance your media presentation of your webpages.

Webpage Styling using Cascading Stylesheets (CSS)
When styling in CSS, constructing styles that have focus on positioning, formatting,
backgrounds, borders, and responsiveness are what create a positive user experience and
user interface. Let’s take a dive into some of the properties of these focus areas.

Cascading style sheets have several positioning properties: float, relative, absolute, static, &
fixed.

To allow an element to float on the left or right of its containing element we use the float property.
While the relative property positions an element to its normal position, the absolute property
positions an element to its closest positioned parent element. The static property sets the element
to the default positioning for all elements. Lastly the fixed position makes an element positioned
relative to the browser window.

The overflow property specifies what happens if the content of an element exceeds the allotted
space.

Height and width properties set the size of elements. Using the max-width or max-height
properties allows us to set the maximum width or height of an element.

Properties for alignment are useful when organizing elements and sections. The align property can
be used to position text or elements to the left, center or right of their containers. In addition to
alignment properties, the display property is more used when displaying the alignment behavior of
an element. 4 common attributes of display are: block, inline, inline-block, flex.

Using the visibility property determines if we allow an element to be visible or hidden.

Box model

Having a common understanding of the box model is essential when working with containers and
elements whose styling will be affected by content, padding, border, and margin areas. Margin
controls the space outside of an element, while padding controls the space within the element.
Border is the space between your margin area and padding area., while the content is what is
inside of the padding area.

When styling in CSS, constructing styles that have focus on text formatting creates easy to
read content and exaggerates the user experience and user interface. Let’s take a dive into
some of the formatting properties of text.

When working with text formatting there are 3 things to think about: font properties, link styles and
text formatting.

Font properties change several things in our text for HTML. You may want to change your text font
in your HTML document, maybe to courier new & Calibri format. The font-family property will allow
you to do that. Sometimes changing the color of your web sites text is needed to create easy to read
content or a cool effect to your page. Adding the color property allows you to do that. Adjusting our
font-style to create text that is italic, normal or oblique may be necessary as well to stress
important text. Changing the size of our text can be done with pixels (px), inches (in), percentage (%)
and many other size styling attributes using the font-size property. Adjusting the boldness of our
text is simplified with the font-weight property giving us the options of (normal, bold, lighter,
bolder). If text is needed to be displayed in small caps font-variant is the appropriate property to
use for this attribute.

Link styles and text formatting work hand in hand. Changing the text color of your links requires
the anchor tag to be included in the selector portion of your CSS.

Link styling example: ul li a {color: green;}

Text Formatting properties like text-transform, text-shadow and text-overflow are commonly
used. Changing text to uppercase, lowercase or capitalizing the begging of each word in an
element should be done with the text-transform property. Creating a mirror effect, neon effect or
adding shadow to text and many more options should be done with the text-shadow property.
When you have text overflowing in its inline direction the text-overflow property allows text to be
clipped for a partial render or replaced by an ellipsis character.

When styling in CSS, constructing styles that have focus on backgrounds and borders creates
added unique style to the user experience and user interface. Let’s take a dive into some of
the background and border properties of text.

Background properties can set and change the color, image, size and if we want the image to
repeat. Changing the color of backgrounds is a common property to use in HTML background-
color can have the attribute that specifies the name of the color. Example rosybrown. In addition,
you could also use RGB format, for example RGB (188, 143, 143). The HEX format is also commonly
used #bc8f8f. Lastly, HSL is another property to use that is represented by percentages, example
HSL (0, 25%, 65%).

To change the background of your body element or another element or section, you will use the
background-image property with the URL (‘ ‘) attribute. The URL attribute should include the file
path to the image wanting to be used, for example background-image: URL(‘filepath/image.png’).
There are property attributes that can be added to the background-image property that allows the
changing of the image itself.

Two background-image properties we will cover are background-size and background-repeat:

Background Size:
background-size: auto|length|cover|contain|initial|inherit;

auto The background image is displayed in its
original size.

length Set the width and height of the image.
percentage Sets the width and height as in percentage. The

first value is width the second is height.
cover Makes the image cover the entire container.

This will cause the image to stretch or cut of
edges.

contain Makes the image fully visible.
Initial Sets the property to its default value.
inherit Takes the property from its parent element.

Background Repeat:
background-repeat: repeat|repeat-x|repeat-y|no-repeat|initial|inherit;

Repeat This is the default, the image is repeated
horizontally and vertically, but the last image

will be clipped if it does not fit.
Repeat-x & Repeat-y Repeat-x, repeats the image horizontally.

Repeat-y, repeats the image vertically.
No-repeat Background image is not repeated, it will only

be shown once.
Space Repeated as much as possible without

clipping. The beginning and ending image are
stuck to the element and whitespace is

distributed evenly
Round The image is repeated and squished or

stretched to fill the space (no gaps)
Initial Sets the property to its default value.
Inherit Takes the property from its parent element.

Border properties allow developers to change a border: color (border-color), width (border-width)
and style of an specified border (solid, dashed, dotted, etc.).

When styling in CSS, constructing styles that are intended for responsive design or layout,
creates the needed user experience and user interface. Let’s take a dive into some of the
properties and attributes that help developers create responsive layouts for mobile devices,
such as: cellphones, tablets, laptops and more.

As you work on responsive layout, 3 key areas take your focus. These are units of measurement,
breakpoints and grids and the viewport and media query.

 Units of measurement are needed to create the proper relevant size of elements and sections.
These include percentage, which is relative to the parent element. Pixel, which is an absolute
element. Emphasized text (em), which is relative to the font size of the element itself. The

viewports are connected through view-width (vw) relative to the viewport width and view-height
(vh) relative to the viewport height.

Using frameworks and templates like Bootstrap or Foundation help offer responsive design with
prebuilt design capabilities.

Viewports and media queries help with styling the visual areas of your webpage. Breakpoints and
grids are needed to organize layouts. Breakpoints are specific points where the layout of the
webpage will respond to provide the best user experience. Grids help organize content into rows
and columns, to ease responsive design.

Utilizing these properties to create responsive layouts to enhance your presentation will assist in
smooth understanding of your content.

https://getbootstrap.com/
https://get.foundation/

Accessibility, Readability and Testing
Creating easy to test, read and use code is a industry practice that should be worked on in the
beginning stages of learning how to code or when increasing your developer skills. This includes
commenting, separation of HTML and external documents, color contrasts and usage, errors, and
cascading issues.

When focusing on accessibility, we must construct well-formed HTML and CSS markup to
reflect the best industry practices. Let’s take a dive into some of the best practices with rules,
commenting, web safe fonts, cross-platform usability, and proper separation of HTML & CSS
doucments.

When working with rule sets, you can reuse rules and rule sets. You want to utilize CSS rules and
selectors with efficiency to prevent redundancy and increase maintenance ability in your
doucments. For example, if you are developing multiple web pages and want to keep a consistent
style throughout your website. You have elements such as headings, links, paragraphs etc. that
need to look the same. Instead of writing CSS rules for each element on every page or creating a
new CSS document for each page, you can simply use reusable classes to define common styles
and apply them wherever they are needed.

Creating web applications or software is unique with each developer. This means that each
developer’s coding / programming styles are different. Adding comments to your HTML and CSS
code is needed to explain the purpose of certain code blocks or sections. This is needed to help
other developers understand your code and make maintaining it easier. You may include a difficult
to understand script in HTML or keyframe in your CSS code that another developer would have a
hard time understanding. Inputting a comment with a detailed explanation of the code would help
them to see what was being done.

To create a comment in HTML you will type in your document <! - - comment text - - >

<!-- This is a comment in HTML. -->
To create a comment in CSS you will type in your document /* comment text */

/* This is a comment in CSS */
To create a comment in JavaScript you will type in your document // comment text

// This is a comment in JavaScript

Developing versatile websites are more than just beautiful styling and well-structured HTML
doucments. Including web safe fonts that are available across all operating systems and browsers
will help with consistent rendering in your website. Some examples of web safe fonts are Arial,
Times New Roman, Helvetica and Georgia. There are many more, but these are some of the most
used.

Creating websites is beyond the desktop. Being able to create functionality across various devices
and platforms should be included in your usability testing . Modern web browsers allow you to test

multiple responsive web design sizes in the inspect element. Optimizing your site for different
screen sizes should always be considered when developing.

Our accessibility is also influenced by the HTML and CSS separation. Following the basic principles
and concerns of separating your HTML and CSS code will help maintain and scale your project.
Using external CSS files to define styles is a great way to promote this.

When focusing on accessibility, taking into consideration accessibility concepts should be
included. Let’s take a dive into some of the best practices alternative text, color contrast and
usage, legibility of typography, tab order, text resizing, text hierarchy and translation.

Providing alternative text for images using the alt attribute, creates accessibility for users relying
on screen readers. The alt attribute can be used to describe the functions of buttons and form
inputs as well. When dealing with color contrast and usage, take into consideration users who
may have visual impairments. Creating sufficient contrast between element backgrounds and text
will help enhance readability. Try to avoid relying on color that expresses important information or
functionality. Legibility of text is vital. Choose easily readable font family styles, sizes, and line
heights. Try avoiding fonts that are difficult to read, small or low in contrast.

Try maintaining a logical tab order to increase the navigation of the website with the keyboard
alone. Pay attention to the natural tab order in HTML markup.

Allowing users to resize text without disrupting the layout or functionality of the website is an
option. Avoid fixed font sizes and using relative units like em or percentage. Utilize semantic HTML
elements such as headings to convey the hierarchy and structure of content, aiding navigation, and
comprehension for all users.

In addition, providing options for translating content into different languages to accommodate
users from diverse linguistic backgrounds, and consider using language attributes (lang) in HTML to
indicate the language of the content.

When focusing on accessibility, following proper structure and integrity of HTML and CSS
documents ensures you compile with industry standards. Let’s take a dive into some of the
best syntax errors, tag mismatching and cascading issues.

To ensure the quality and compatibility of your web development project, it's good practice to utilize
HTML and CSS validators, which inspect your code for syntax errors and adherence to standards.
Quick resolutions of your document’s syntax errors are essential to prevent glitches and uphold the
integrity of your code. For example, tag mismatches must be corrected diligently to ensure proper
nesting and closure of elements, preventing rendering inconsistency and enhance accessibility.
Furthermore, gaining proficiency in CSS specificity and inheritance principles helps alleviate
unintentional styling conflicts, while the utilization of CSS reset or normalize stylesheets
establishes a consistent baseline appearance across various browsers, ultimately improving cross-
browser compatibility and enhancing the overall user experience.

Some common HTML and CSS validators available are:

• CSS Validation Service
• CSS Lint
• W3C Markup Validation Service
• Validator.nu – HTML5 Validation Tool

Outro

 Now that you have the fundamentals of using HTML, we highly recommend using the
CSS book to deepen your knowledge and skills within web development. Below are some of the
things we covered in this book that will help aid your career in software engineering.

Headings & Comments

HTML includes six levels of headings ranked from 1 to 6. Ensure you properly use tags by

opening and closing them. For practice, create an H1 and H3 element inside the body tag,

displaying your name and new career title. Integrate comments to enhance code understanding.

Elements

All HTML documents consist of HTML elements, starting with an opening tag and ending with a

closing tag. Learn about block and inline elements, paragraphs, attributes, images, lists, tables,

links, and more. Enhance your coding skills and build a foundation for web development.

Forms

Collecting user information is crucial. Learn about form elements, input types, and attributes.

Explore methods like GET and POST, and discover the importance of the action attribute.

Incorporate forms into your webpage, ensuring a user-friendly and interactive experience.

Colors, Audio & Video

Explore HTML colors using hexadecimal characters. Add vibrancy to your webpage by changing

the background color. Delve into embedding audio and video elements, understanding

attributes like controls, loop, and autoplay. Enhance user engagement with multimedia

elements.

Unveiling CSS

Welcome to the world of Cascading Style Sheets (CSS)! As you delve into the

intricacies of styling, remember the power of rules and selectors. Whether you're

defining styles for headers, mastering class and ID selectors, or exploring text styling,

your journey is filled with creativity.

The CSS journey covers everything from the box model to background styling, list

styling, link styling, table styling, form styling, layout styling, positioning styling,

transforms, transitions, and animations. Each concept adds a layer to your coding

expertise, transforming you into a versatile developer.

Remember, the flex layout and positioning properties give you control, and

transformations open a realm of possibilities. Dive into transitions and animations to

bring life to your creations.

Thank You for Choosing Astro Clare Technology!

At Astro Clare Technology, we express our gratitude for choosing to embark on

this coding journey with us! Whether you're a dedicated learner or a parent nurturing

the next software engineer, your trust means the world to us.

Our mission extends beyond teaching coding skills. We aim to cultivate critical

thinking, logical outlooks, problem-solving skills, discipline, and career-ready structures.

The evolving landscape of technology should be accessible to all, and we're here to

make that happen.

As you progress through the activities, each successful assessment earns you a

certificate from Astro Clare Technology, a testament to your accomplishments. Your

journey is not just about learning to code; it's about becoming the greatest engineer

you can be.

 As you conclude this book, you’ve taken significant strides toward becoming a proficient

coder. Your journey doesn’t end here- it’s just the beginning. Continue to explore, experiment,

and most importantly enjoy the process of bringing your ideas to life through code.

Your Journey, Your Achievement

Completing this book marks a significant milestone in your coding journey. Your

commitment to learning and growing is commendable. As you showcase your best code

forward, know that Astro Clare Technology is proud to be a part of your success.

Clarence Scott,

CEO & Founder

Astro Clare Technology

